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SUMMARY 

The application of grid stretching or grid adaptation is generally required in order to optimize the 
distribution of nodal points for fluid-dynamic simulation. This is necessitated by the presence of disjoint 
high gradient zones, that represent boundary or free shear layers, reversed flow or vortical flow regions, 
triple deck structures, etc. A domain decomposition method can be used in conjunction with an adaptive 
multigrid algorithm to provide an effective methodology for the development of optimal grids. In the present 
study, the Navier-Stokes (NS) equations are approximated with a reduced Navier-Stokes (RNS) system, 
that represents the lowest-order terms in an asymptotic Re expansion. This system allows for simplified 
boundary conditions, more generality in the location of the outflow boundary, and ensures mass conserva- 
tion in all subdomain grid interfaces, as well as at the outflow boundary. The higher-order (NS) diffusion 
terms are included through a deferred corrector, in selected subdomains, when necessary. Adaptivity in the 
direction of refinement is achieved by grid splitting or domain decomposition in each level of the multigrid 
procedure. Normalized truncation error estimates of key derivatives are used to determine the boundaries of 
these subdomains. The refinement is optimized in two co-ordinate directions independently. Multidirec- 
tional adaptivity eliminates the need for grid stretching so that uniform grids are specified in each 
subdomain. The overall grid consists of multiple domains with different meshes and is, therefore, heavily 
graded. Results and computational efficiency are discussed for the laminar flow over a finite length plate and 
for the laminar internal flow in a backward-facing step channel. 

KEY WORDS Multigrid Domain decomposition Flux splitting Deferred corrector 

1. INTRODUCTION 

Numerical solution procedures that are designed to compute accurately and efficiently steady, 
high Reynolds number (Re) flows necessitate the use of local grid refinement in regions of the flow 
field wherein the velocity or pressure gradients can be very large, e.g. boundary, shear or vortical 
layers, shocks waves, etc. These regions are generally confined to relatively small portions of the 
overall flow domain and are not known a priori. An adaptive multigrid domain decomposition 

* Graduate Research Assistant. 
t Professor. 

0271-2091/92/231333-23$16.50 
0 1992 by John Wiley & Sons, Ltd. 

Received 14 June 1991 
Revised 15 June 1992 



1334 K. SRINIVASAN AND S. G. RUBIN 

procedure is shown herein to be effective for identifying and resolving all local, and also globally 
influential, phenomena. This procedure also ensures that an optimal level of grid refinement is 
provided in the differing domains of the flow field. Mass conservation is maintained throughout, 
on all grid levels, and boundary conditions, including those at the outflow, are accurately 
satisfied. 

Local direction-selective refinement, that is driven by specified flow parameters and accuracy 
limits, is achieved by sequentially splitting the overall flow domain into a variety of subdomains. 
In the present analysis, the grid refinement process is performed, independently, in two co- 
ordinate directions by combining a domain decomposition strategy with an adaptive multigrid 
algorithm. In this approach, each grid in the multigrid hierarchy is of equal or lesser extent than 
all of its coarser predecessors. The subgrids are split into several multidimensional subdomains 
that are defined by specified directional and global resolution requirements. A similar approach 
has been presented in Reference 1 for steady-state problems; although, no attempt was made to 
meet the disparate need for refinement in two different co-ordinate directions. Thus, when solving 
a simple boundary layer flow, wherein the gradients are dominant in the ‘normal’ direction, the 
‘streamwise’ grid may also be refined unnecessarily. In the present investigation, the ‘subdomain- 
ing’ process is based on requirements that allow for segmentally varying grid resolution in 
multiple (two) directions and throughout the flow field. Truncation errors in key flow parameters, 
such as the pressure gradient and the vorticity gradient, are utilized for this purpose. 

The domain decomposition approach allows for the flexibility of employing different solvers in 
different subdomains of the flow field. In some regions, where interactions are very strong, a direct 
solver can significantly improve the efficiency of relaxation methods. In addition, unsteady 
phenomena are often confined to small regions of the flow-field. These can be identified through 
the domain decomposition procedure, and time-accurate methods can be used in these sub- 
domains. Although only steady-state solutions are presented in the current work, the same can be 
extended to unsteady flows by treating each time-consistent step as a standard steady-state 
calculation. The segmented grid from the previous time level can be used initially for the present 
time step and the grid can be adjusted to accommodate the changes in the solution at the new 
time level. 

In the present investigation several two-dimensional, steady, laminar, incompressible-flow 
examples have been considered. The reduced Navier-Stokes (RNS) system with an explicit 
deferred corrector (DC) for full Navier-Stokes analysis has been applied implicitly with a pres- 
sure-based form of flux vector discretization’ to compute the triple-deck structure surrounding 
the trailing edge of a finite flat plate, and the reversed flow regions that develop in a backstep 
channel. The pressure-based flux-split formulation leads to a precise prescription of surface 
normal boundary conditions on all local subdomain boundaries as well as the outflow boundary. 
This ensures that global mass conservation requirements are satisfied automatically. This is 
generally not the case with most characteristic-based Navier-Stokes schemes, where special care 
has to be taken in order to ensure global mass conservation on each grid. The primitive variable 
RNS solver is also directly applicable and totally consistent on non-staggered grids. This is 
contrary to many other incompressible, primitive-variable, Navier-Stokes finite difference formu- 
lations, that require pressure Poisson solver or artificial compressibility concepts. 

The RNS pressure-based flux-split discretization allows for a clear prescription of the outflow 
boundary condition. A condition is required only for the pressure at the outflow. The non- 
reflectivity of this boundary condition has been tested by truncating the domain length that is 
used to compute the flow in a backstep channel, i.e. bringing the outflow boundary much closer to 
the inflow. In addition, the use of the adaptive multigrid domain decomposition procedure allows 
the outflow boundary to be placed far downstream without increasing the computational cost 
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significantly. This removes any uncertainty concerning the influence of the outflow boundary 
location on the solution accuracy. 

Another advantage of the present method is that grid independence of the solution is ensured in 
a very efficient manner. In non-adaptive calculations, fine grid computations become very 
expensive and establishing grid convergence can be quite costly. This is not the case in the present 
method, as the refinement is performed selectively and, hence, the use of very fine grids, in 
subdomains requiring such resolution, becomes feasible. 

2. GOVERNING EQUATIONS AND DISCRETIZATION 

The lowest-order RNS system of equations, in arbitrary sheared Cartesian co-ordinates and in 
non-conservation form, is written as follows: 

continuity 

u; + ?Itl = 0 (14  

(-momentum 

?-momentum 

U( V +  Y L u ) ~  + V( V +  YLu), +p,=DC (1c) 
where t = x ,  q=y-y,,(x) and V=o-ybu is the contravariant velocity component in the q or 
normal direction (for yL(x) G 1); J+,,(x) is the surface definition. (u, u) are the Cartesian velocities in 
the (x, y) directions, respectively. This system of equations is obtained by neglecting the t- 
diffusion terms in the surface-oriented (-momentum equation and all diffusion terms in the 
‘normal’ or q-momentum equation, i.e. the DC deferred corrector terms. These terms are 
higher-order in the parameter expansion of the full Navier-Stokes (NS) equations and are 
retained in an explicit DC when full NS solutions are required. Generally speaking, the effect of 
the DC is negligible for the problems considered herein. The lower-order RNS system represents 
a composite of the Euler and second-order boundary layer  equation^.^ This system has been used 
effectively for the computation of two-three-dimensional, incompressible/compressible, 
steady/unsteady, laminar/turbulent flows and for a variety of ge~metries.~ The surface-oriented 
direction t is generally defined by an appropriate co-ordinate transformation and does not have 
to be in the direction of the mainstream, e.g. in the stagnation region the mainstream is in the 
surface normal (q) dire~tion,~ and for a driven cavity and Cartesian co-ordinates, the t direction 
changes from x along the horizontal surfaces to q along the vertical side-walls, where the RNS 
system is now defined to include the u,, term in the y-momentum equation. The RNS methodo- 
logy fails for very low values of Re or for high-frequency waves, where the (-diffusion terms are 
not higher-order and must be retained in full NS solvers. 

System (1) is discretized with a pressure-based form of flux-vector splitting for the axial or 
t derivatives, which are entirely inviscid in character, and a ‘box’ (or trapezoidal) scheme fur the 
continuity and q-momentum equations in the normal or q direction.* Therefore, the discrete 
continuity equation is centred at (i,j-+). The t-momentum equation is centred at ( i , j )  and the 
q-momentum equation at (i,j++). Trapezoidal two-point (i, j-t-i), in (la) and (lc), or three-point 
(i,j), in (lb), central differencing is used for the normal derivatives; all convective axial derivatives 
are upwind-differenced. The equations are centred at different grid locations, namely, (i, j - i )  for 
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continuity, ( i , j )  for the <-momentum and ( i , j+$) for the q-momentum equations; however, the 
flow variables are evaluated at the non-staggered grid point location ( i , j ) .  The pe  term in the 
r-momentum equation and the uc term in the continuity equation are flux-vector-differenced with 
the pressure-based form of flux-vector splitting.’ In this technique, the p s  term is represented by 

pc=mi- 112 (pi-pi- 1 )/A<i +( l -mi+ l p ) ( P i +  1 -Pi)/A<i, (2) 

where 

mi 112 =(mi + mi * 1 )/2. 

Here M ,  is the streamwise Mach number and y is the ratio of specific heats. This reduces to 
a simple ‘forward’ difference for the incompressible flows considered herein. This introduces an 
elliptic acoustic interaction or upstream pressure influence, through the p c  = ( p i +  --P~)/(A<)~ 
contribution in (2). The calculated pressure pi for incompressible flow (mi = 0) is influenced only by 
the downstream pressure pi+ and upstream velocities ui-  1 ,  ui-  1. In fact, the inflow pressure is 
not prescribed but determined from the solver. This reflects the upstream acoustic influence that 
is included in the RNS procedure. For compressible flows, equation (2) shows both upstream and 
downstream pressure influences. For supersonic flow (mi = 0), the upstream influence vanishes as 
it should. This form of pressure-based flux discretization plays an important role in determining 
the required surface, upper, outflow and interface boundary conditions, and in satisfying interface 
mass conszrvation requirements. All diffusion terms, including those in the DC, are given by 
conventional central differences. 

3. BOUNDARY CONDITIONS 

The boundary conditions are prescribed as follows: 

(a) At the inflow, u and u are specified; p is determined from the solution. 
(b) No slip is imposed at all solid walls; p is determined from the solution. 
(c) For external flow, u and p (generally, p = O )  are imposed at the outer (in q) boundary; u is 

determined from the solution through mass conservation or the continuity equation (la). 
(d) If at the outflow (in <) u > 0, p ,  is prescribed for external flows, while for internal flows; only 

p is prescribed. This is a result of upwinding of the convective terms. If u <O at the outflow 
(in <), e.g. subdomain within a separated flow region, then the negative convective fluxes are 
assumed to be higher-order and are neglected. This is similar to the FLARE approximation 
used in separated boundary layer theory. With this approximation, only the pressure or 
pressure gradient is specified at the outflow boundary. 

These are the natural boundary conditions on the global flow domain. In the adaptive 
multigrid domain decomposition process, the flow field is split into a number of subdomains. 
These have local boundaries and, therefore, it becomes necessary to impose modified boundary 
conditions at the subdomain interfaces. The individual subdomains communicate with each other 
through boundary condition interchange. This procedure will be explained further in the section 
on interdomain transfers and conservation at grid interfaces. 

The pressure flux-split discretization and the RNS approximation play a key role in determin- 
ing the boundary conditions. Significantly, at the outflow boundary, for internal flows only 
a simple Dirichlet condition on the pressure is required. No condition is required on the 
velocities, which are satisfied exactly from mass and momentum conservation. This differs from 
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the boundary conditions that are usually specified with most other full NS solvers. For this 
reason, the outflow boundary can now be moved much farther upstream. This is possible when 
the pressure can be prescribed accurately, without distorting the solution near the outflow 
boundary. 

A downstream boundary condition is required for the velocities only if reversed flow occurs at 
the outflow. In this case, the requirement for a velocity boundary condition can be removed by 
neglecting the negative convective fluxes at the outflow station. For weak reversed flows this is an 
excellent approximation, as the small negative velocities have only a minor influence on the 
solution. Similarly, for external flows, with u>O, only a Neumann condition on the pressure is 
required. The terms in the full NS equations, that are added explicitly through the deferred 
corrector, do not alter these boundary conditions in any way. Therefore, the advantages of the 
RNS discretization, i.e. simplicity of boundary conditions and efficiency of the solution proced- 
ure, are retained even for full NS solutions with a small DC correction. 

4. GRID STRUCTURE 

Standard multigrid methods use a heirarchy of grids ranging from coarse to fine. The present 
adaptive method aims at limiting the extent of the fine grids to regions where the flow gradients 
are large. In this manner, excessive grid points can be eliminated. In general, the Nth multigrid 
level consists of several subdomains. Each multigrid level has an equal or lesser extent than the 
next coarser grid in the multigrid hierarchy. This extent is determined by truncation error 
estimates of key derivatives. 

The first two (or possibly three) grid levels cover the entire computational domain. The mesh 
size is initially quite coarse in all directions in which adaptivity is to be prescribed. If unidirec- 
tional, e.g. l ,  adaptivity is to be implemented, then a preset stretched grid is used along the 
co-ordinate direction which is not adaptively refined (typically, q), and a coarse grid is employed 
in the 5 direction. Each multigrid level comprises several subdomains, which derive part of their 
topology from the subdomaining pattern of the coarser predecessor. Within each subdomain, of 
a given multigrid level, the refinement is specified independently, although the refinement 
criterion is the same for each co-ordinate direction. Thus, each subdomain of a multigrid level can 
act as a parent for a subdomain or for subdomains of the next finer multigrid level. If, at a given 
multigrid level, a particular subdomain is refined in only one direction, e.g. y, then on subsequent 
multigrid levels, further refinement within this subdomain is performed only in the y direction. 
A similar strategy is adopted for the 5 direction. Only subdomains that result from refinement of 
a parent subdomain in both the 5 and q directions require further decomposition according to the 
direction-selective refinement specifications. 

5. REFINEMENT STRATEGY 

In most adaptive gridding methods, on any grid level, an estimate of the truncation error of the 
discretized system of equations is used to identify those regions that require finer grid resolu- 
tion. 1,6 The overall truncation error estimates, however, do not provide information on the 
specific direction(s) that require refinement. Therefore, for regions requiring improved resolution, 
the grid is refined in both directions, even though only one co-ordinate gradient may be 
significant. In order to achieve directional refinement adaptivity, it is necessary to monitor the 
truncation error of selected gradients or derivatives. For the two problems considered herein, the 
truncation error in the pressure and vorticity gradients, e.g. p s  and uqq, are monitored in order to 
define the regions that require refinement in 5 and q directions, respectively. 
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The truncation error estimate is obtained from the solution on two successive grids of the 
multigrid hierarchy. In order to determine the truncation error in a 5 (and/or v ] )  derivative, a finer 
grid must be used in the 5 (and/or q) direction. Thus, truncation error estimates would be 
available only for those points that are on the fine grid. Although the p s  and u,, terms are the key 
derivatives for the present analysis, the truncation error of these terms alone will not suffice to 
ensure that uniform accuracy is achieved throughout the flow domain. The global truncation 
error for the full discrete system of equations is monitored for this purpose. The truncation error 
in the global discrete system provides a good ‘stopping’ criterion for the refinement process. 
A second approach which has also been tested is grid convergence of the solution itself. The 
maximum change in the solution is monitored and a tolerance is set for that quantity, e.g. lo-’. 

Two types of adaptive calculations are performed for the geometries considered herein. 

(a) One-dimensional adaptive calculation or semicoarsening multigrid, with adaptivity in the 
5 direction only and with a preset stretched (adapted) v]  grid. 

(b) Two-dimensional adaptive calculation, in which the refinement is automated in both 
directions and uniform grids are used in each subdomain. Grid stretching is not applied 
since the grids change discretely from subdomain to subdomain. Thus, the overall grid is 
heavily graded. 

The underlying procedure for both the methods is identical. However, they are described 
separately for clarity. 

5.1. One-dimensional (semicoarsening) adaptivity 

The solution is first obtained on a grid that is coarse in the 5 direction, but stretched in the 
v]  direction. This means one co-ordinate direction is well-resolved whereas the other is not. The 
grid is then refined over the entire domain (in t), and an improved solution is obtained. From 
these two solutions, the truncation error of the key derivative, e.g. p e ,  and of the global discrete 
system is estimated using a Richardson extrapolation procedure. For example, the truncation 
error in the p e  term is calculated as 

Here i represents the count on the fine grid and m represents the count on the coarse grid for the 
same physical location. Hence, the distance between points i and i+ 1 is half the distance between 
rn and m + 1. Typically, only one subdomain results for a given multigrid level. This decreases in 
extent as the grid level increases. The extent not only decreases in the 5 direction, but also in the 
v]  direction. This clearly identifies the region influenced by the pressure interaction. For the 
problems considered herein, the significant flow gradients in 5 are centred around a region 
141 <to. For more complicated flows, it is possible that even with a one-dimensional adaptive 
calculation, several disjoint subdomains will be necessary to significantly improve the efficiency 
relative to non-adaptive calculations. 

5.2. Two-dimensional adaptivity 

For the two-dimensional adaptive calculation, different regions will have different refinement 
requirements in the two co-ordinate directions; therefore, it is necessary to define regions that 
have disparate grid requirements. Subdomains requiring refinement in the v]  direction, in the 
t direction, or in both the (5 ,  v ] )  directions, are identified using the truncation error estimates for 
the key derivatives. As a result, a given multigrid level will typically have more than one 
subdomain. Once again, p r  is used to identify regions for 5 refinement and u,, is used as the 
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parameter to identify regions where q refinement is required. The regions that require refinement 
in the 5 and directions are identified independently. The intersection of the two regions is refined 
in both directions and the remaining portions are refined in one of the two co-ordinate directions. 
Different grid sizes are used in different regions; however, within each subdomain uniform grids 
are specified. This procedure is applied on the third and higher levels of the multigrid hierarchy. 
The calculation proceeds with intergrid multigrid transfers. On convergence, the truncation error 
estimation process is repeated using the Nth and the stored ( N  - 1)th multigrid level grid 
solutions. 

When two-dimensional adaptivity is implemented, the grid that is generated at each multigrid 
level reflects very clearly the flow physics. In addition, the procedure identifies those regions that 
need further refinement in the two co-ordinate directions. For example, for the finite flat-plate 
geometry, the gradients in the normal direction are larger near the trailing edge than in other 
regions. This indicates that the scaling of the flow field in the region near the trailing edge, i.e. the 
triple deck, is different from simple boundary layer behaviour. For a separated flow calculation, 
e.g. the flow past a trough geometry, it was found in Reference 7 that the region where 
y~ refinement was required was much larger in the vicinity of the separation bubble than elsewhere 
along the boundary layer. This reflects the increase in boundary layer thickness at separation. In 
this manner, the adaptive grid generation procedure automatically provides an insight into the 
nature of the flow field, and the result is an appropriate mesh that resolves such behaviour. 

The two-dimensional adaptive calculation, by virtue of using only uniform grids, recovers the 
advantages of the standard full muitigrid procedure. The procedure starts in a full multigrid 
mode, in which the grid is coarsened in both directions when restricting to a coarser level. As 
different types of refinement (5 ,  q, or both) are specified in different subdomains, the choice of the 
multigrid mode is fixed. In subdomains in which the grid is only refined along one co-ordinate 
direction, the semicoarsening mode is employed for the appropriate direction. Thus, the standard 
full multigrid mode is employed wherever possible. This is described in greater detail in the 
section on multigrid implementation. 

The choice of a refinement criterion is flexible. In Reference 8 a strategy by which the tolerance 
is changed so that a certain fixed percentage of points are refined during a refinement process is 
adopted. Two types of refinement criteria are specified herein. In one procedure, a tolerance is set 
directly for the raw truncation error and, in the other, a tolerance is set for the local truncation 
error normalized by the maximum value in the flow domain. The results obtained through the 
two methods were quite similar. The regions that require refinement in the respective direction(s) 
are identified through these tolerances. The choice of tolerance is constrained by the gradient of 
the truncation error parameter. Typically, for the problems considered herein, the pressure field is 
fairly smooth and as such the truncation error in p r  also varies smoothly. On the other hand, the 
vorticity gradients are quite sharp. A much smaller tolerance has to be chosen if the standard 
deviation of this truncation error field is large. For a normalized p e  truncation error, typical 
tolerances in the range 0.014.05 are specified. But for the vorticity, values in the range 
0.0001-0.0005 are required to achieve the required level of accuracy. 

6. SOLUTION PROCEDURE AND MULTIGRID IMPLEMENTATION 

A global pressure relaxation procedure’ is generally used to solve the discrete system of 
equations. This is essentially a line SOR procedure. The RNS discretization necessitates that the 
pressure field, in unseparated regions, or both the pressure and velocity, in separated regions, is 
relaxed. The solution is marched from inflow to outflow, with an initial guess required for the 
pressure. The multigrid method inherently allows the provision of a good initial guess as the 
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calculation progresses from the coarser to the finer grids. This further enhances the convergence 
process. lo  

For the RNS system of equations, a semicoarsening multigrid procedure has been presented in 
Reference 11 to accelerate the convergence of the global pressure relaxation (in 5 )  procedure.' 
A von Neumann analysis of the linearized discrete form of the RNS system shows that the rate of 
convergence of the global relaxation procedure is dictated by the maximum eigenvalue 1, as 
given by 

A- 1 - ~ 1  ~ ' ( A l 3 ~ N f / q & ,  

where c1 is a constant of 0(1), N ,  is the number of stations in the 5 direction, qM is the normal 
boundary location, and A t  is the axial step size. The convergence rate is significantly improved if 
the extent of the domain in the two directions is reduced or the number of stations N ,  is increased. 
The current multigrid domain decomposition procedure, in effect, decrease A by reducing q M  
whenever a fine A t  is specified. Therefore, on very fine grids, where A( < 1, N ,  or q M  is reduced 
and 1 is comparable to the values of the coarser grids. 

In the present method, each multigrid level is comprised of one or more subdomains. Within 
each subdomain, the global pressure line relaxation procedure is applied. The use of a direct 
solver in certain strong interaction regions has been considered in Reference 12. The calculation 
proceeds from inflow to outflow, and, through the various subdomains, passes through a number 
of interdomain boundaries. Boundary conditions are exchanged at subdomain interfaces during 
the marching procedure. A minimal amount of overlap is allowed for this purpose. This is 
explained in greater detail in Section 7. 

In the present application, the multigrid method is implemented in a full approximation 
storage (FAS) mode. The global pressure relaxation technique reduces to a block SOR procedure 
in 5 for the pressure in attached flow regions, and for the pressure and upwinded velocities in 
reversed flow regions. At each station, an implicit, fully coupled tridiagonal system is inverted. 

When highly stretched grids are used in q to resolve the boundary layer, the standard 
nonadaptive semi-coarsening mode of the multigrid method has been shown to be more effective 
than the standard full coarsening mode. In this mode, the streamwise grid alone is coarsened 
when the calculation shifts to coarser grids. The same q grid is retained. Significant gains in the 
overall effort have been achieved with this approach.' The full coarsening mode of the multigrid 
method is preferable, however, as coarsening in both directions significantly reduces the com- 
putational effort required to obtain coarse-grid solutions. The advantage of the full coarsening 
multigrid mode is restored with the two-dimensional adaptive calculation, as uniform grids are 
now considered in each of the individual subdomains, i.e. there are no stretched grids in any 
subdomain. Grid changes are reflected by the appearance of a new subdomain. The calculation is 
initiated with the full coarsening mode of the multigrid method. As finer multigrid levels develop 
through the refinement strategy, the semicoarsening multigrid mode is applied in those sub- 
domains, for which refinement has been reduced to one direction relative to the parent 
subdomain. 

The smoothing properties of the relaxation operator, as in all multigrid methods, play an 
important role in determining the overall performance of the procedure. In Reference 11 it was 
found that with semicoarsening, the standard discrete global pressure relaxation method does not 
provide very good smoothing properties. This is due to flux-split discretization procedure, which 
leads to significant over-relaxation of the pressure field. This is especially true for high Re, 
viscous/inviscid interacting flows. For inviscid flaws the smoothing properties of the relaxation 
operator are found to provide smooth residual fields, even in the over-relaxation mode so that 
satisfactory performance of the multigrid method results. Some form of under-relaxation is 
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required in order to improve the smoothing properties of the pressure relaxation procedure. This 
is achieved by incorporating a source term, first introduced by Israeli and R~senfeld, '~ in the 
< momentum equation. This leads to much smoother residual fields and improved representation 
on the coarser grids. With the additional source term, the expression for the pressure gradient p r 6 ,  
as given by (2), becomes 

Therefore, E < 1 corresponds to over-relaxation, E > 1 corresponds to under-relaxation and E = 1 is 
Gauss-Seidel relaxation. For E = 0, which corresponds to the case of gross over-relaxation, the 
standard form of the pressure relaxation procedure is recovered and the residual field is 
insufficiently smoothed. 

Although under-relaxation of the pressure field leads to slower asymptotic convergence on 
a single grid, the domain decomposition procedure alleviates this problem to a great extent. Since 
the truncation error in the pr  term is used to determine those regions requiring refinement in the 
4 direction, subdomains in which the grid is refined only in the 9 direction will be influenced by 
a nearly converged pressure field. Therefore, it is possible to proceed with the calculation in these 
subdomains without any form of under-relaxation. Non-smooth residual fields are generated 
when the pressure field changes significantly from one multigrid level to the next. Regions that do 
not require refinement in 5 are those for which the pressure field is already grid-independent; 
these regions will have smooth residual fields and the source term or under-relaxation is not 
required. 

In the present calculation, the one-dimensional adaptive calculation adds an element of 
subdomaining to the semi-coarsening analysis presented in Reference 11. Only portions of the 
global domain now require fine grid resolution in the t direction. For the two-dimensional 
adaptive calculation, the form of the multigrid algorithm can be different for different sub- 
domains. The standard full coarsening mode (semi-coarsening mode) is employed in subdomains 
requiring bidirectional (unidirectional) refinement. One fine-grid work-unit is comprised of one 
sweep in each subdomain belonging to a given multigrid level. This includes the interdomain 
transier processes. The decision to move the calculation back to a coarser grid is based on the rate 
of convergence on each subdomain. If the ratio of the residual norm between two successive 
global iterations, in any subdomain belonging to that multigrid level, falls below a certain value, 
then the calculation is restricted to the coarser level. Values ranging from 0.85-0.95 were used for 
the ratio of the residual norms. In flows with strong separation, it was necessary to use a higher 
value (closer to unity). This ensures that more iterations are performed on the fine grid before 
restriction to the coarse grid. In this way the separated flow regions can become reasonably 
established on the fine grid. If the calculation is switched to the coarser grid prematurely, it is 
found that the coarse-grid calculations can become unstable. 

A criterion for shifting back to the fine grid is also required. The fine-grid solution is not 
corrected until the residuals of the coarse-grid subdomains are all reduced to a value one order of 
magnitude lower than the maximum residual for all subdomains of the finer level. 

The multigrid components are summarized as follows: 

(a) Relaxation is given by uf: = S 'uf: - 1 ,  where S k  is the global pressure relaxation operator and 
uk on convergence satisfies L k u k = f k .  Here k represents the present or finest multigrid level 
and n represents the iterate. Lkuk =fk is the discrete approximation of the continuous 
problem Lu=f: 

(b) Restriction to the coarse grid is represented by the following equations: 
L k - l U k - l  = ~ k - l , . k + L k - l * k  1 k "  I k -  ut 
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for points on the coarse grid which lie within the fine grid and 
L k - 1  k - 1 -  k 1 u -f - 

for points on the coarse grid that lie outside the extent of the fine grid. Here rf:=fk- Lkuk,. 
1 i- and it- are fine-to-coarse grid transfer operators. The full-weighting operator 
recommended in Reference 14 is used to transfer the residuals, and the solution is restricted 
by using a simple injection operator. 

(c) Prolongation or correction, where the fine-grid solution is corrected with the solution from 
the coarse-grid modified problem is represented by 

u : + l = u f : + z ~ - l ( U k - l - l ~ - l  u n), 

where 1:- is a coarse-to-fine interpolation operator. 

In both the adaptive semi-coarsening multigrid calculation and the two-dimensional adaptive 
calculation, the fine multigrid levels are of limited extent and these lead to interior boundaries. 
Boundary conditions for these subdomains are prescribed from the coarser-grid values. There- 
fore, the multigrid transfer operations act in a manner similar to that of interacting boundary 
layer procedures, i.e. the transfer processes involve communication between the viscous and 
inviscid layers. The multigrid restriction process yields information about the viscous layers 
(where most of the refinement is performed) to the inviscid regions. Similarly, the prolongation 
or correction process yields information about the inviscid region, e.g. the location of the outer 
boundary, etc., to the viscous layers. This exchange of information provides accurate solutions in 
all subdomains on all grid levels. 

It should be noted that in the present calculation, the multigrid transfer operations play a dual 
role. In addition to accelerating the convergence of the relaxation procedure, they also provide 
information from finer to coarser grids and, thus, improve the accuracy of the solution in regions 
of the coarser grids where refinement was not required. The second term in the multigrid 
restriction process acts as a truncation error injection term and improves the discrete approxima- 
tion on the coarse grid. Thus, on the coarser grids, instead of solving Lk-'uk-'=fk-' every- 
where, we solve L k - ' t 2 = ~  in the portion of the domain where z =  L k - ' f i - l u k .  This is closer to 
the continuous problem Lu=$ Here L is the continuous counterpart of the discrete operator 

and u is the exact solution to the continuous problem; u k - l  is the exact solution to the 
discrete problem and li is the improved solution due to the modified right-hand side of the 
discrete aproximation. 

In standard non-adaptive multigrid methods, since the fine-grid extent is the same as that of the 
coarse grid, once the fine-grid residual norm reduces below a certain tolerance, e.g. W4, the 
calculation can be terminated. But in adaptive multigrid calculations, a second tolerance has to 
be set for the corrections from the coarse to the fine grid. Small values for the residuals on the fine 
grid do not guarantee an accurate solution; the boundary condition imposed on the fine grid 
could still be in error. Since some of these boundary conditions are updated during the multigrid 
prolongation process, it becomes necessary to set a tolerance for the correction 
l i - l (uk- l - I i - lu : ) .  Typically, values ranging from to are used for these com- 
putations. 

For the backstep geometry, the explicit deferred corrector (DC) is included, for interior points, 
as part of the discrete system. Since the DC terms are added explicitly, they are treated as known 
functional fields on the right-hand side of the governing equations. The effect of the DC becomes 
significant only on finer grids. The DC is included when the solution attains a specified level of 
convergence. The introduction of the DC at interior points changes the character of the governing 

Lk- 1 
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system. The marching procedure now requires some under-relaxation. Therefore, the solution is 
allowed to converge to a certain tolerance level, e.g. without the DC terms and then the DC, 
which is evaluated using this base solution, is treated as a known explicit term on the right-hand 
side of the equations. The decision as to when the DC is to be included is determined by 
monitoring the DC truncation error. If this changes more than a prescribed tolerance at any given 
grid level, then the DC is retained. If the primary DC terms are included implicity, as for a direct 
solver, this becomes unnecessary. 

7. INTERDOMAIN TRANSFER OF BOUNDARY CONDITIONS AND 
CONSERVATION AT GRID INTERFACES 

For a given subdomain, the following boundary conditions are prescribed: 

u=v=O at q=O;  u=1, p=O at q=qmax; pc=O at t=t,,,; 

u and u are free-stream values at t = 0. Here urnax and Emax represent the boundaries of the global 
domain. If a subdomain has its outflow at some t<tmax, then the boundary condition, on 
pressure, changes from Neumann to Dirichlet type at this location. If the lower boundary of 
a subdomain is at some q > O ,  then non-zero velocities from the coarser grid are prescribed. In 
time-dependent, characteristic-based, Navier-Stokes computations, that use locally embedded 
grids, boundary conditions are required for all variables, i.e. u, v and p at all boundaries. Special 
care has to be taken to ensure that mass conservation is not violated locally or globally at the 
interfaces and, in particular, in a multigrid procedure. In the present pressure-based flux-split 
RNS formulation, this difficulty does not occur as the normal velocity (u in q, or u in t) is not 
prescribed at the upper or lower or local subdomain outflow boundaries. Only the tangential 
component u is prescribed at the upper interface or interdomain boundary. The pressure-based 
flux-split box differencing allows the calculation of the normal velocity at the outer boundaries 
and the pressure at the body surface. The normal velocity is computed from the continuity 
equation (la) at every grid point and, therefore, mass conservation is automatically satisfied on all 
levels and for all subdomains. This eliminates the need for special interpolation formulae to 
ensure conservation of mass, when the boundary conditions are prescribed from the coarse-grid 
solution. Thus, weak instabilities, that arise when such methods are applied without satisfying 
mass conservation, do not appear in the present method. Direct evaluation of the pressure at 
inflow or lower boundaries also eliminates the need for special pressure boundary conditions. 

The calculation is performed sequentially rather than in parallel in the various subdomains. As 
such, the boundary conditions at the inflow and outflow stations for each subdomain are updated 
with the latest available values. The overlap allowed in the subdomaining process follows the 
following rules: 

(a) The last station of any subdomain, which is at some 5 < t,,,, coincides with the first station 
of the subdomain to its right (if one exists), where the pressure is computed. 

(b) Similarly, the inflow station of any subdomain, which is at some 4: > 0, coincides with the 
last station on the subdomain to its left (if one exists), where the velocities are computed. 

(c) If the inflow station or the outflow station of a given subdomain coincides with the physical 
boundaries of the global flow field, then the boundary conditions of Section 3 are applied. 

(d) If there are no subdomains to the right for the cases in (a), or if there are no subdomains to 
the left for the cases in (b), then these boundaries are updated using coarse-grid values 
during the multigrid prolongation process. 
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In the vertical direction, no overlap is necessary. If a subdomain has only one of its horizontal 
boundaries in common with another subdomain, then updating the boundary conditions along 
this edge, after one sweep in all subdomains, leads to iterative divergence on this subdomain. This 
influence gradually filters through to other subdomains. If these boundaries are updated through 
the multigrid transfer process, then the calculation is convergent. This reflects the fact that 
updating just one boundary after each sweep, with the other three updated only during the 
multigrid transfer process, leads to an inconsistency. This constraints the variables from adjusting 
to changes that occur dynamically, i.e. as the solution evolves in the various subdomains. It is 
possible to perform the calculation in parallel on a given multigrid level that comprises more than 
one subdomain. This requires that the updating process be lagged by one sweep. This approach 
has not been implemented in the present computations. 

8. RESULTS AND DISCUSSIONS 

All the calculations presented herein are initiated with uniform-flow initial conditions on the 
coarsest grid. On finer grids, the interpolated coarse-grid solution fields are used as the starting 
values. The better the initial guess, the better is the convergence to the final solution.1° The 
multigrid framework provides this element in a natural fashion. For both of the examples 
considered herein, Reynolds number continuation is not necessary in order to initiate the 
calculation at any prescribed value of Re. 

Example 1: Flow past a finite f lat  plate 

Figure 1 depicts the grid obtained with the one-dimensional adaptive calculation. Note that the 
finer grids zoom in around the trailing edge, which is located at x = 1.0. The finer grids also reduce 
in extent in the q direction, even though adaptivity is required only in the g direction. Each 

1.25 

1 .00 

0.75 

Y 

0.50 

0.25 

0.00 
a50 X 1.00 1.50 

Figure 1. Multigrid levels (one-dimensional semicoarsening adaptivity); trailing-edge flow (Re=  lo5) 
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Figure 2. Multigrid levels (two-dimensional adaptivity); trailing-edge flow (Re= lo5) 

multigrid level contains only one subdomain that requires further refinement on subsequent 
levels. 

Figure 2 shows the composite grid obtained with two-dimensional adaptivity. (The x-co- 
ordinate is scaled by a factor of two.) Note that, within each subdomain, uniform grids are 
prescribed. Figure 2 is an overlay of seven multigrid levels, each comprising several subdomains. 
In each level it is found that the subdomain, in which refinement in both directions is performed, 
is centred around the trailing edge. This validates the refinement strategy. Both of these adaptive 
computations, i.e. semi-coarsening and two-dimensional adaptivity, are compared with non- 
adaptive semi-coarsening multigrid calculations. A uniform fine grid in 5 and a stretched q grid is 
prescribed. The grid stretch factor for the latter is chosen by specifying the minimum and 
maximum Aq values and the location of qmax as applied in the two-dimensional adaptive study. 
The same q grid is employed for adaptive semi-coarsening. Figure 3 shows a comparison of the 
pressure coefficient C, for the three calculations. Note that there is good agreement in the 
pressure variation and, in particular, the predicted peak pressures. Table I summarizes the 
computer memory and CPU requirements. These are given as percentages of the non-adaptive 
semi-coarsening calculation. Note that the memory requirement or the one- and two-dimensional 
adaptive calculations are quite similar. This signifies that the specified q stretching for the 
one-dimensional calculation is quite good. 

The adaptive grid of Figure 2 shows that the interaction near the trailing edge is of finite extent. 
From asymptotic triple-deck theory, three layers with different length scales can be identified,' 
i.e. a lower viscous rotational deck of O(Re-'/'), a middle inviscid rotational deck of O(ReC4/') 
and an upper inviscid irrotational deck of O(Re-3 /8 ) .  Since the vorticity is zero in the upper deck, 
and since vorticity is the monitored parameter for refinement in the q direction, q refinement 
should not be necessary in this region. The grid obtained from the two-dimensional adaptive 
calculation displays this result clearly. In each multigrid level, there is a region away from the 



1346 

0.01 0 

CP 

-0.000 

-0.010 

-0.020 

K. SRINIVASAN A N D  S. G. RUBIN 

Cp Variation Comparison (Domain Decomposition vs Full Refinement) 
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Figure 3. Comparison of C, variation; trailing-edge flow (Re= lo5) 

Table I. Comparison of computer resource requirements for trailing-edge flow 

Full refinment 
Two-dimensional One-dimensional with stretched 

Aspect adaptive ( O h )  adaptive (%) 9 grid (%) 

CPU 18.03 
Memory 12.90 

15.10 
13.22 

100.0 
100-0 

body that is, in fact, only refined in the 5 direction. This region, in the finest multigrid level, 
represents the extent of the upper inviscid deck. Estimates for the extent of the other two decks 
can also be obtained from the grid structure. In more complicated flows, e.g. turbulent flow past 
the same geometry, for which analytical methods cannot be easily developed, the necessary 
resolution in appropriate regions will result automatically. A form of numerical asymptotic 
analysis results. 

Example 2. Internalflow in a backstep channel 

In this type of flow, which is dominated by rather large recirculation regions, it is still possible 
to initiate the calculation with uniform flow conditions for all Re (based on step height) values 
considered herein. Even for the relatively difficult case of Re = 800, which leads to two separation 
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bubbles, one on each wall, some form of Reynolds number continuation, as applied in several 
other reported NS solvers (e.g. Reference 16), is not required for the present calculations. 

The reattachment length (X,/h) for the primary recirculation zone is compared in Table I1 for 
a laminar Reynolds numbers. Comparisons are given for the present method, full refinement 
computations using the standard non-adaptive multigrid method, and earlier calculations by 
other researchers. 

For adaptive refinement in the q direction the truncation error is scanned from the wall 
towards the outer boundary. For external flow, the vorticity gradient decreases exponentially and 
a thin layer near the wall, where refinement is maximum, can be identified. This region is specified 
by fixing the upper boundary at the furthest point, or the largest q value taken over all ( locations, 
that satisfies the previously given truncation error tolerance. For internal flows, boundary layers 
where refinement in q is required, exist at both boundaries of the normal or q domain. Since the 
number of grid points that are necessary for resolving the gradients in the normal direction is 
moderate for the flow in a backstep channel, no attempt was made herein to adaptively refine in 
the q direction. However, a full two-directional multigrid procedure is applied wherever ( refine- 
ment is necessary. 

Table I11 displays the computer resource requirements for the backstep channel calculation. 
For each Reynolds number, the CPU and memory requirements are shown as percentages of the 
corresponding non-adaptive calculations. Note that as the Reynolds number increases from 
Re = 133 to Re = 600, the number of grid points required to resolve the flow field increases. This is 
expected, as the size of the separation bubble increases with Reynolds number. The number of 
required grid levels, as well as the finest mesh size for all Reynolds numbers up to Re = 600, is 
identical in each direction. A total of five multigrid levels are defined for all Reynolds numbers up 
to Re=600; however, the subdomain extent for each multigrid level did vary for different 

Table 11. Comparison of reattachment length ( X , / h )  

Present calculations Ferziger Caruso Sotiropoulos 
Re Adaptive Non-adaptive (Reference 1) (Reference 17) (Reference 18) 

133 3.88 3.88 4.00 3.90 3.68 
267 6.50 6.50 6.50 6.50 6.34 
400 8.64 8.64 8.70 8.80 8.80 
600 11.0 11.0 10.7 10.8 11.26 

Table 111. Comparison of computer resource requirements for backward- 
facing step 

Aspect Re AdaptiveJNon-adaptive calculation 

CPU 
133 
267 
400 
600 

133 
267 

600 
Memory 400 

35.49% 
36- 1 5 ?” 
46.23 % 
50.40% 
30.80% 
3 7.44 ?‘o 
41.49% 
47.49% 
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Reynolds numbers. The extent of the finer grids is governed by the size of the recirculation zone, 
which increases as the Reynolds number is increased. For the Re = 800 case, six multigrid levels 
are required, as the change in the solution from level 4 to level 5 is still significant. The CPU and 
memory gains for the Re=800 case are comparable to the Re=400 case. An increase in 
computational time, similar to that in memory requirements, is observed for the examined range 
of Reynolds numbers. This is due to the increase in the number of grid points. The time required 
for the full refinement calculation shows only a marginal change, as the Reynolds number is 
increased from 133 to 600. This is entirely due to the changing nature of the flowfield, since the 
same grid pattern was developed. When velocity relaxation is increased, i.e. as increasing reversed 
flow regions exist, the convergence rate slows down and additional iterations are required. 

The location of the outflow boundary and the non-reflectivity of the outflow boundary 
condition are major aspects of this study. Since the adaptive multigrid domain decomposition 
procedure is initiated on very coarse grids, it is possible to place the outflow boundary very far 
downstream and still perform the calculations efficiently. 

Figure 4. Comparison of streamwise velocity profiles at (a) x=0.0625, (b) x=0.125, (c) x=0.1875 and (d) x=0.25; 
backward facing step ( R e = 6 0 0 )  
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Figure 5. Multigrid levels; backward-facing step (Re=  100) 

Y scale factor = 10 

0 5 10 15 20 25 x 30 

Figure 6. Multigrid levels; backward-facing step (Re = 267) 

The solutions at the outflow are in almost perfect agreement with the analytical fully developed 
flow values. Although finer grids only appear in and near the reverse-flow regions the influence of 
the outflow boundary location is propagated through the multigrid transfers to and from the 
coarser grids. 



1350 K. SRINIVASAN AND S. G. RUBIN 

For the laminar backstep, the DC terms neglected in the RNS approximation are included after 
obtaining the base solution for the reduced system. For this geometry, the vertica1 wall near the 
step corner is a region where the full Navier-Stokes terms might be important. Along the vertical 
wall, the u,, term represents the vortical or diffusive boundary layer influence. It is found that the 
inclusion of the DC term does not have significant quantitative influence on the solution. But 
there is a significant qualitative change in the solution very near the step corner. Figures 4(a)-4(d) 
show the comparison of the streamwise velocity profile at four successive stations from the step 
corner for Re = 600. Note that at the first station, the streamwise velocity component is actually 
positive when the DC is included. This represents a counter-rotating secondary vortex within the 
large primary recirculation zone. The difference in the profiles diminishes further away from the 
step corner. The reattachment length remains unchanged. As expected, the influence of the DC is 
confined to a small region near the corner. The lowest-order RNS approximation is quite 
accurate throughout the flow field. 

Figures 5 and 6 depict the grid generated by the adaptive strategy for the Re = 100 and Re = 267 
cases, respectively. Note that the fine-grid region for the Re=267 case is larger in extent as 
compared to the Re = 100 case. This reflects the fact that the recirculation region for the Re = 267 
case is larger than the Re = 100 case. Note that near the outflow a grid as coarse as Ax = 0.5 can be 
used and still the solution accuracy is not lost. Thus, the adaptive strategy makes full use of the 
fact that far downstream the flow is fully developed and the streamwise derivatives are very small. 
Thus, the truncation error even on a coarse grid is acceptably small. 

The non-reflectivity of the Dirichlet pressure outflow boundary condition was tested for the 
Re = 800 case by performing the calculation on computational domains of three different lengths. 
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Figure 7. Comparison of streamwise velocity profile at x = 7.0; backward-facing step (Re= 800) 
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Figure 8. Comparison of streamfunction contours; effect of outflow boandary location; backward-facing step (Re = 800) 

It was found that moving the outflow boundary inward did not have a significant effect on these 
solutions. Comparisons of the streamwise velocity profile at x=7 are given in Figure 7. The 
outflow boundary is located at  x = 7, x = 15 and x = 30 and the results clearly indicate that the 
effect of the outflow location on the solutions is minimal. Similarly, Figure 8 shows a comparison 
of the streamfunction contours obtained by placing the outflow at x=7 and x =  15. The two 
contour patterns are identical. Further results can be found in Reference 19. 

A benchmark solution for Re = 800 is available in Reference 14. The present solution, which is 
obtained using the adaptive multigrid domain decomposition procedure, is compared with these 
results. In Figure 7, note that reverse flow also occurs on the upper wall. The appearance of this 
upper separation bubble is thought to introduce three-dimensionality into the flow, and, for this 
reason, there is some disagreement between the experimental results and all the numerical 
solutions. The present results, which are totally grid-independent, agree quite well with several of 
the other computations. Due to the very fine meshes that have been prescribed with the multigrid 
domain decomposition procedure, the residuals and truncation errors are quite small and, 
therefore, these solutions are considered to be highly accurate. Figure 9 shows the nearly fully 
developed streamwise velocity profile at x = 15.0. The grid spacing in the streamwise direction at  
this station is 0.5 but the agreement in the solutions is still very good. Figure 10 depicts 
a comparison of vorticity profiles at x=7.0. Figure 11 compares the normal velocity profile at 
x = 15, and Figure 12 depicts the vorticity contours obtained by placing the outflow boundary at 
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Figure 9. Comparison of streamwise velocity profile at x =  15.0 backward-facing step (Re=800) 

x=7.0 .  Once again, the same contour levels as in Reference 16 are used. The agreement 
throughout is excellent. Figure 13 shows the convergence history on the finest grid level for the 
Re = 800 case. The number of iterations on coarser grids is scaled according to the number of grid 
points in each level. 

8. CONCLUSIONS 

An adaptive multigrid domain decomposition method has been used to compute incompressible 
laminar flows efficiently. A low-order RNS system of equations, a pressure-velocity non- 
staggered grid solver, a strong mass conservation technique at interfaces and the outflow 
boundary, and a pressure-based flux-split discretization are the key features of the procedure. 
Significant gains in computer resources have been achieved, compared to standard non-adaptive 
methods. Good agreement is obtained between the present solutions, standard non-adaptive full 
refinement computations and other published results. The computational cost is several times 
smaller than that required by most other NS methods.16 For example, the CPU required for 
a backstep channel calculation, with Reynolds numbers in the range 10MO0, varies between 
5 and 10 min on an IBM 320 RISC/6000 workstation. For Re=800, one additional multigrid 
level is added to ensure grid independence, and the CPU required is increased to approximately 
30 min. All solutions are initiated with uniform flow approximations and Reynolds number 
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Figure 10. Comparison of vorticity profiles at x=7.0; backward-facing step (Re=  800) 
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Figure 11. Comparison of normal velocity profiles at x =  15.0; backward-facing step (Re=800) 
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Figure 12. Vorticity contours (outflow at x = 7.0); backward-facing step; (Re = 800) 

Figure 13. Convergence history on sixth segmented multigrid level; Re=800. 
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continuation is not required, even for the complex Re=800 case. Grid convergence has been 
established efficiently through the adaptive multigrid procedure. The outflow boundary condi- 
tion has been shown to be non-reflective. In addition, it has been shown that the procedure is not 
very sensitive to the location of the outflow, i.e. far downstream or somewhat closer to the inflow. 
The flux-split discretization allows a direct computation of the normal velocity and, therefore, 
mass conservation at grid interfaces and subdomain boundaries is achieved in a simple fashion on 
non-staggered grids. Extension of the same philosophy to three-dimensional flows is currently in 
progress. 
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